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Abstract. The local monodromy matrix for a small-polaron model describing the motion 
of an additional electron in a polaronic crystal is presented by relating it to a special 
asymmetric six-vertex model. The generating functional for the infinite conservation laws 
in the model is written down. Moreover, the explicit expression for the first non-trivial 
conserved current next to the Hamiltonian is constructed. 

Recently, Pu and Zhao [ l ]  dealt with the exact solution of a small-polaron model 
describing the motion of an additional electron in a polar crystal. The approach, 
however, is not unblemished; in fact, the model Hamiltonian cannot be expressed in 
terms of the logarithmic derivatives of the transfer matrix constructed from their local 
monodromy matrix. As is well known in the quantum inverse scattering method (QISM),  

this is a criterion for whether or not a system is a completely integrable one [2,3]. As 
a result of this improper choice for the local monodromy matrix, the energy eigenvalue 
given by PU and Zhao is not consistent with that obtained by using the coordinate 
Bethe-Ansatz technique. In this comment we re-examine this problem by relating it 
to a special asymmetric six-vertex model. This also allows us to construct explicitly 
the infinite conservation laws in the model [4-61. 

The model Hamiltonian may be written in the form 
N N N 

k = l  k = l  k = l  
x=(&+ w, 1 n k - J  ( a : a k + l + u : + l a k ) + V  n k n k t l .  (1) 

Here the concrete expressions for W, J and V, along with a discussion of the basic 
assumptions used in getting (11, can be found in the paper of Fedyanin and Yushankay 
[7]. Upon using the well known Jordan-Wigner transformation [8,9] for a,:, U, and nj 
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with U; = f( U; f iu:) and U;, U;, uj’ being Pauli spin matrices at lattice site j ,  we obtain 
instead of (1) the Hamiltonian in terms of Pauli spin matrices: 

N N 

H =  - [ ~ J ( u ~ u ~ + ~ + u ~ u ~ + ~ ) - ~ V U ~ U ~ + , ] + ~ ( W + E +  V) 2 ~ f + t N ( w + ~ + f V )  
j = 1  j = 1  

(3)  

where the periodic boundary condition is assumed. Thus, the problem reduces to the 
study of the Heisenberg X X Z  model in a magnetic field, which is related to the 
asymmetric six-vertex model [lo]. 

In the quantum inverse scattering method, the local monodromy matrix for the 
asymmetric six-vertex model is a two by two matrix: 

The R matrix satisfying the Yang-Baxter relations 

R(A, CL )Lj ( A  @ Lj ( CL ) = Lj (CL ) @ Lj ( A ) R (  A, CL 1 
or, equivalently, 

R(A, C L ) T N ( A ) @   CL) = 7 ” ( ~ ) @  TN(A)R(A, P )  

with 

TN(A) = L N ( A ) .  . . L , ( A )  

does exist provided the following constraints are valid: 

a+b+ a:b: 
a-b- al_b’_ 

a + a - + b + b - - c 2  - a:al”:b’_-c’’ 
a+b++ a-b-  a:b:+al_bi 

- 

- ( 9 )  

in which the prime denotes that the corresponding argument is p instead of A. For 
the Heisenberg X X Z  model in a magnetic field, we have introduced the following 
convenient parametrisation: 

a+:b+:a-: b-:c=5sin(A+77):5-’sin(A -77):5-lsin(A+77):5sin(A - ~ ) : s i n 2 7  

with 
(10) 

5 = sec a cos(A - 7) + a )  sec(A - 77). (11) 

The corresponding R matrix is 
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with 
a:  : bl: : a!  : by : e" 

=&(A)&-l(p) sin(A - p + + ~ ) : & ( A ) & ( p )  sin(A - p ) :  

& - ' ( A ) [ ( p )  s h ( A  - p  4-27) : & - ' ( A ) & - ' ( p )  sin(A - p )  :sin 277. (13)  

fN(A)=Tr[LN(A). . . L , ( A ) ] .  (14) 

From this we can set up a class of commuting 2 N  x 2N transfer matrices t y ( A ) ,  

When A = 77 it is quite easy to see that t N ( A )  is simply proportional to the operator 
that shifts all arrows one column to the left. Regarding 77 and a as constants and 
differentiating with respect to A, we can then deduce that 

+J ( s in27  tancu+cos277)NIN (15) 

where IN is the identity operator and J, V and W are given by 
J :  - i V :  ( W +  E + V )  = 1 :cos 277 : 2 sin 277 tan a. (16) 

Therefore we have concluded that the one-dimensional small-polaron model is related 
to a special asymmetric six-vertex model described by the Boltzmann weights (IO), 
i.e., it provides a class of commuting row-to-row transfer matrices commuting with the 
Hamiltonian (1). As usual, the model has higher conserved currents which are involu- 
tive with each other. The explicit expression for the first non-trivial conserved current 
next to the Hamiltonian is given by an expansion of the transfer matrix in powers of 
A :  

[ H - t N (  W+€)12(A -v)* 1 1  
2! J2 sin2 277 
1 1  
2! j 2  sin2277 

+- 

-- 

I 1 
2! 

+ - ( -i) j  ( A - 77)* + . . . 
with 

- $v[ UJ+l( U;U,--l- HC) + (U;+l U,- - HC)U:-,]}. 

The others may be obtained in a similar fashion. It is easy to see that our results, as 
expected, reduce to those previously found by Liischer [4] in the zero-field limit. 

Let us now go over to the fermion operator language. This can be done by using 
the inverse Jordan- Wigner transformation and introducing a gauge transformation 
defined by Pu and Zhao: 
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Such being the case, the Yang-Baxter relations reduce to the form 

B(A, P ) ~ ( A ) @ ~ ( P )  = q ( ~ ) @ q ( A ) % e ( A ,  P) 
s s 

with 

b, - (b, - ia+)n, CQI 

-ita: a- - (a-  +ib_)n, Zj(A) = 

a i : O  0 0 
0 c" ibi: 0 
0 -ib! c" 0 
0 0  O a !  

Here by @ we mean the Grassmann direct product [ l l ]  
s 

with P( 1) = 0, and P(2)  = 1. In this case, the first non-trivial conserved current next 
to the Hamiltonian ( 1 )  expressed in terms of the fermion operator language is 

- JV[n j+ l (a fa j - l  - H C )  + (a;+,aj - ~ c ) n ~ - ~ ] + J V ( a f a , - ~  - H C ) )  (23) 

It is a pleasure to thank Xiao-Yu Kuang, Jian-Gang Tang and Jing Yang for their 
help and useful advice. 
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